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1 Introduction

In this article, I introduce completely regular clique graphs. After reviewing basic proper-
ties of distance-regular completely regular clique graphs in [22, 23], I will present a recent
result in [25] showing that majority of known distance-regular graphs of large diameter
are completely regular clique graphs. In addition, I will explain why I am interested in
distance-regular completely regular clique graphs. I also add open problems on completely
regular clique graphs.

Throughout, we consider only finite graphs. Let Γ = (X,R) be a connected graph
with vertex set X and edge set R consisting of 2-element subsets of X. When {x, y} ∈ R,
i.e., x and y are adjacent, we write x ∼ y. For x, y ∈ X, ∂Γ(x, y) = ∂(x, y) denotes
the distance between x and y, i.e., the length of a shortest path between x and y in Γ.
The diameter d(Γ) is the maximal distance between two vertices. For C ⊂ X, C is also
regarded as an induced subgraph of Γ. A nonempty subset C of X is said to be a clique
if every distinct vertices in C are adjacent.

A nonempty subset C of X is often called a code in Γ = (X,R). For each integer i,
the subset Γi(C) = {x ∈ X | ∂(x,C) = i} is called the ith subconstituent with respect
to C, where ∂(x,C) = min{∂(x, y) | y ∈ C}. We write Γ(C) for Γ1(C). The number
δ = δ(C) = max{i | Γi(C) ̸= ∅} is called the covering radius of C. When C = {x}, we
write Γi(x) for Γi({x}), and set Γ(x) for Γ1(x). The number k(x) = |Γ(x)| is called the
valency of x. For x, y ∈ X with ∂(x, y) = i with i ∈ {0, 1, . . . , d(Γ)}, let

Bi(x, y) = Γi+1(x) ∩ Γ(y), Ai(x, y) = Γi(x) ∩ Γ(y), Ci(x, y) = Γi−1(x) ∩ Γ(y),

and bi(x, y) = |Bi(x, y)|, ai(x, y) = |Ai(x, y)| and ci(x, y) = |Ci(x, y)|.
A connected graph Γ = (X,R) of diameter d = d(Γ) is said to be distance-regular

if, for each i ∈ {0, 1, 2, . . . , d}, the numbers ci = ci(x, y), ai = ai(x, y) and bi = bi(x, y)
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depend only on i = ∂(x, y). For distance-regular graphs we refer the reader to [6]. We
mainly follow the notation and the terminologies in the monograph.

Let Γ = (X∪Y,R) be a connected bipartite graph with the bipartitionX∪Y , i.e., there
is no edge within X, and Y . Let dX = dX(Γ) = max{∂(x, y) | x ∈ X, y ∈ X ∪ Y }. Then
Γ is said to be distance-semiregular on X, if for each i ∈ {0, 1, 2, . . . , dX}, the numbers
cXi = ci(x, y), and bXi = bi(x, y) depend only on i = ∂(x, y) whenever x ∈ X and y ∈ X∪Y .
Note that each vertex y ∈ Y is of valency bY0 = bX1 + cX1 and distance-semiregular graphs
are biregular, i.e., the valency of a vertex depends only on the part the vertex belongs to.
If Γ = (X ∪Y,R) is distance-semiregular on both X and Y , Γ is called distance-biregular.
For more information on distance-biregular graphs and distance-semiregular graphs, see
[21].

For a bipartite graph Γ̃ = (X ∪ Y, R̃) with the bipartition X ∪ Y , the bipartite half of
Γ̃ on X is a graph with vertex set X such that two vertices are adjacent whenever they
are at distance 2 in Γ̃. It is easy to see that if Γ̃ = (X ∪ Y, R̃) is a distance-semiregular
graph on X, then its bipartite half on X is distance-regular.

Let Γ = (X,R) be a connected graph, and C a nonempty subset of X with covering
radius δ = δ(C). Then C is said to be a completely regular code if γi = γi(x) = |Γi−1(C)∩
Γ(x)|, αi = αi(x) = |Γi(C) ∩ Γ(x)|, βi = βi(x) = |Γi+1(C) ∩ Γ(x)| do not depend on
x ∈ Γi(C) for i ∈ {0, 1, . . . , δ}. For completely regular codes of distance-regular graphs,
see [6, Section 11.1] and [20].

Definition 1.1 Let Γ = (X,R) be a connected graph, and let C be a collection of cliques
of Γ. Then Γ is said to be a completely regular clique graph with parameters (s, c) with
respect to C, if the following are satisfied.

(i) Each member C ∈ C is a completely regular code of size s+ 1 ≥ 2.

(ii) Each edge is contained in exactly c members of C and c ≥ 1.

When C consists of Delsarte cliques, it is called a Delsarte clique graph with parameters
(s, c) in [1, 2], and Delsarte clique graphs with parameters (s, 1) are called geometric in
[3]. For examples of Delsarte clique graphs, see [1].

Before we state basic properties of completely regular clique graphs, we define regular
incidence structures as follows.

Definition 1.2 Let I = (X, Y, I) be an incidence structure, whereX and Y are nonempty
finite sets, and I a subset of X × Y , i.e., a relation between X and Y . When (x, y) ∈ I,
we write xIy, and we say that x is incident with y, y is incident with x, or x and y are
incident. Then I is said to be a regular incident structure with parameters (s, t, c) with
s, t, c ≥ 1, if the following are satisfied.

(i) Each element x ∈ X is incident with exactly t+ 1 elements of Y .

(ii) Each element y ∈ Y is incident with exactly s+ 1 elements of X.
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(iii) For every pair of distinct elements y, y′ ∈ Y , there is x ∈ X such that (x, y) ∈ I
and (x, y′) ̸∈ I.

(iv) For every pair of distinct elements x, x′ ∈ X,

|{y ∈ Y | (x, y) ∈ I and (x′, y) ∈ I}| ∈ {0, c}.

Let I = (X,Y, I) be an incidence structure.
The collinearity graph Γ = (X,RI) of I is a graph with vertex set X and edge set

RI = {{x, x′} ⊂ X | x ̸= x′ and there exists y ∈ Y such that (x, y) ∈ I and (x′, y) ∈ I}.
The incidence graph Γ̃ = (X ∪ Y, R̃I) is a bipartite graph with vertex set X ∪ Y and

edge set R̃I = {{x, y} | x ∈ X, y ∈ Y, (x, y) ∈ I}.
An incidence structure I = (X,Y, I) is said to be connected if its incidence graph is

connected.

Let I = (X, Y, I) be a regular incidence structure. Then it is clear from our definition
that I is connected if and only if its collinearity graph is connected. For each y ∈ Y , let
Cy = {x ∈ X | (x, y) ∈ I}. Then by the condition (iii), Cy ̸= Cy′ if y, y

′ ∈ Y are distinct.
Let Γ̃ = (X ∪Y, R̃) be a distance-semiregular graph on X with the following property.

For y, y′ ∈ Y with y ̸= y′, Γ̃(y) ̸= Γ̃(y′). (1)

Then Γ̃ is the incidence graph of a connected regular incidence structure.

We now list known basic properties of completely regular clique graphs shown in
[22, 23].

1. Let Γ be a completely regular clique graph of parameters (s, c) with respect to a
collection C of cliques.

(a) Each member C ∈ C is a maximal clique if d(Γ) > 1. (See a remark preceding
Lemma 8 in [23].)

(b) The parameters of completely regular codes C ∈ C do not depend on C. (The-
orem 1 in [22])

(c) Γ is regular, and by setting Y = C and for x ∈ X and C ∈ Y , xIC if and only
if x ∈ C, I = (X,Y, I) defines a connected regular incidence structure with
parameters (s, ck/s− 1, c), where k is the valency of Γ. The collinearity graph
of I is Γ. (See Lemma 9 in [22], and Section 2.1 in [23].)

2. Let I = (X,Y, I) be a connected regular incidence structure with parameters (s, t, c).
Set C = {Cy | y ∈ Y }, where Cy = {x ∈ X | (x, y) ∈ I}. Then the following are
equivalent.

(i) The collinearity graph Γ = (X,RI) of I is a distance-regular completely regular
clique graph of parameters (s, c) with respect to C.
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(ii) The incidence graph Γ̃ = (X ∪ Y, R̃I) of I is distance-semiregular on X.

(See Theorem 3, Propositions 8, 10 in [22] and Theorem 3 in [23].)

3. Every bipartite distance-regular graph of diameter at least three satisfies the con-
dition (1). In particular, the bipartite half of a bipartite distance-regular graph of
diameter at least three is a completely regular clique graph.

2 My Personal Historical Remarks

Let me explain how I became interested in completely regular clique graphs.

Recall that a connected regular and edge regular graph is said to be of order (s, t) if
it does not contain K2,1,1. It is easy to see that for such a graph there are nonnegative
integers s and t such that Γ(x) is a t + 1 disjoint union of cliques of size s. Hence the
valency is s(t + 1). Moreover, every maximal clique is of size s + 1 and each edge is
contained in exactly one such maximal clique. Therefore, every distance-regular graph of
order (s, t) affords a regular incidence structure of parameters (s, t, 1).

In [18], with A. Hiraki and K. Nomura, we determined all distance-regular graphs of
valency 6 and a1 = 1. It is easy to see that if a distance-regular graph satisfies c2 = 1
or a1 ≤ 1, then it is of order (s, t) for some integers s and t. Hence the graphs in
question are of order (2, 2) and afford regular incidence structures of parameters (2, 2, 1).
By our investigation we could show that the incidence graph of distance-regular graph of
order (2, 2) enjoy high regularity. The bipartite graphs with this high regularity were later
defined as distance-semiregular graphs in [21]. We knew that the incidence graphs of many
distance-regular graphs of order (s, t) are distance-semiregular, but we were interested in
when the incidence graph of a distance-regular graph of order (s, t) is distance-semiregular
as most of our works then were focused on it.

In [21], besides defining the concept of distance-semiregular graphs, I showed that
distance-regular graphs of order (s, t) with s > t have Delsarte cliques and the incidence
graphs are distance-semiregular. For a distance-regular graph which is obtained as the bi-
partite half of a distance-semiregular graph, I showed that many parametrical restrictions
which do not hold in general.

In [24], I studied the Terwilliger algebra T (C) of a distance-regular graph with respect
to a subset C, and if a vector satisfies a special condition, called tight, it generates a thin
irreducible module, i.e., a module on which the adjacency matrix acts as a tridiagonal
linear transformation. In addition, if the base subset C is completely regular, the primary
module is thin, and if C is a clique, every non-primary irreducible T (C)-module of end-
point zero, i.e., the module containing a vector whose support intersects with C, is thin.
Since every Delsarte clique is completely regular, I thought that most of the results for
Delsarte cliques may well be generalized to completely regular cliques.

Thus, when J. Koolen and others started to study Delsarte clique graphs in [1, 2, 3], I
made a plan to investigate Delsarte clique graphs replacing Delsarte cliques by completely

4



regular cliques. I knew that there are distance-regular graphs which do not have Delsarte
clique graphs, but have good collections of completely regular cliques.

In 2012, I received a question from M. Fiol by email, and started a collaboration with
his group. We showed that for a connected graph, every edge is completely regular with
same parameters if and only if it is an almost bipartite or bipartite distance-regular graph
in [7].

Soon after this, I started to study completely regular clique graphs, and showed that
the parameters are uniquely determined if the size of completely regular cliques is fixed.
See [22]. Thus the result in [7] holds even if we do not assume a condition on parameters.
This was a breakthrough because the condition on parameters is easily obtained alge-
braically for Delsarte cliques, but we did not know a corresponding result for completely
regular cliques.

There was another motivation. Brouwer-Wilbrink, Brouwer-Cohen, and de Bruyn
[5, 4, 11] classified regular near polygons of diameter at least three with c2 > 2. For the
classification of large class of distance-regular graphs. I am convinced that the techniques
of incidence geometries are very powerful, and the study of universal covers is the key
when we want to recognize the structure locally. The vertex-clique incidence graph of
a distance-regular graph, when we consider it as a point-line geometry, is a starting
point. Every distance-regular completely regular clique graph affords a certain incidence
structure with high regularity, and I believe this is a very good class of distance-regular
graphs to study using techniques of incidence geometry. The collaboration with B. de
Bruyn in [12] helped my understanding.

Let Γ be a distance-regular completely regular clique graph with parameters (s, c) of
valency k > 2 and diameter at least two. If s = 1, then it is an edge distance-regular
graph, and Γ is either bipartite or almost bipartite and c = 1. Hence the distance-2-graph
of Γ is a distance-regular completely regular clique graph with parameters (s′, c′) with
s = k − 1 > 1 and c′ = c2 of Γ. Therefore, if we focus on distance-regular completely
regular clique graphs of parameters (s, c), we may assume that s > 1, i.e., so-called thick
line case.

3 Completely Regular Clique Graphs of Known-Type

We state our main theorem. The definitions of the graphs in the theorem are found in [6].

Theorem 3.1 Let Γ be one of the distance-regular graphs listed below:

The polygons, the Johnson graphs, the folded Johnson graphs, the Odd graphs,
the doubled Odd graphs, the Grassmann graphs, the doubled Grassmann graphs,
the Hamming graphs, the halved hypercubes, the folded hypercubes, the halved
folded hypercubes, the dual polar graphs, the half dual polar graphs of type D,
the Ustimenko graphs, the Hemmeter graphs, the bilinear forms graphs, the
alternating forms graphs, and the quadratic forms graphs.
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Then Γ is a completely regular clique graph.

The Doob graphs, the twisted Grassmann graphs, and the Hermitean forms graphs
of diameter at least three are not completely regular clique graphs with respect to any
collection of cliques.

We also investigated the collections of cliques C, the graph becomes a completely
regular clique graph with respect to C.

Since the bipartite half of a bipartite distance-regular graph is a completely regular
clique graph, Theorem 3.1 can be considered as a generalization of the works of J. Hem-
meter and others who determined bipartite distance-regular graphs whose bipartite half
are known distance-regular graphs of large diameter. See [13, 14, 15, 16, 17].

Corollary 3.2 Let Γ be one of the distance-regular graphs listed in Theorem 3.1. If Γ is
a bipartite half of a distance-regular graph Γ̃, then (Γ, Γ̃) is one of the following:

(J(2N + 1, N),Doubled Odd Graph), (Jq(2N + 1, N),Doubled Grassmann Graph),

(1
2
H(N, 2), H(N, 2)), (1

2
H(2N, 2), H(2N, 2)), (1

2
(DPG of type D),DPG of type D),

or (Ustimenko Graph,Hemmeter Graph).

4 Two Technical Results

To prove Theorem 3.1, we use the information on the complete list of maximal cliques
obtained by J. Hemmeter and others.

When the graph is known to be a completely regular clique graph with respect to a
collection of cliques, the following result is useful to search another collection of cliques
that also defines a completely regular clique graph on the same graph.

Theorem 4.1 Let Γ be a distance-regular graph of valency k and diameter d ≥ 2, and
let C and C ′ be collections of cliques. Suppose Γ is a completely regular clique graph with
respect to both C and C ′ with parameters (s, c) and (s′, c′) respectively. Assume that there
are C ∈ C and C ′ ∈ C ′ such that |C ∩ C ′| = e > 1. If s ̸= s′, then

ss′ = k(e− 1).

Our proof of Theorem 4.1 uses the primary modules of Terwilliger algebras with respect
to C ∈ C and C ′ ∈ C ′. I do not know if the result can be proved by combinatorial argument.

If Γ is a distance-regular graph of order (s, t), the result follows easily. Note that
the Hermitean forms graphs are distance-regular graphs of order (s, t) but each maximal
clique is not completely regular if the diameter is at least three.

Theorem 4.2 Let Γ be a distance-regular graph of order (s, t). Then the following are
equivalent.

(i) Γ is a completely regular clique graph.
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(ii) Γ is a completely regular clique graph of parameters (s, 1) with respect to the collec-
tion of all maximal cliques.

(iii) For every maximal clique C, C is a completely regular code.

Proof. By the the definition of completely regular clique graphs, the equivalence of (i),
(ii) and (iii) is obvious.

Corollary 4.3 The following graphs are completely regular clique graphs with respect to
the collection of all maximal cliques, and there is no other choice of a collection of maximal
cliques these graphs afford a structure of a completely regular clique graph.

(i) The Hamming graphs H(d, q).

(ii) The dual polar graphs:

Cd(q), Bd(q), Dd(q),
2Dd+1(q),

2A2d(r),
2A2d−1(r) with q = r2.

(iii) Bipartite distance-regular graphs and almost bipartite distance-regular graphs: The
polygons, the Odd graphs, the doubled Odd graphs, the doubled Grassmann graphs,
the folded hypercubes, the Hemmeter graphs.

Proof. These graphs are known to be of order (s, t). See [6].

5 Concluding Remarks

In this section, we collect problems and remarks.

Problem 1 Are completely regular clique graphs distance-regular?

Problem 2 Is there a distance-regular graph of diameter d ≥ 2 which is of completely
regular clique graph with respect to three collections of cliques of different size?

By Theorem 4.1, if Γ is a completely regular clique graph with respect to two collections
of cliques of different size s and s′, then ss′ = k(e−1). Hence, if s is fixed, e is determined
by s′.

When Γ is the half dual polar graph of type D, the Ustimenko graph, the alternating
forms graph, or the quadratic forms graph, we failed to determine the parameter c, and
hence C completely.

Problem 3 Determine possible values of c, i.e., the collection C of cliques in the remaining
cases.
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The incidence graph Γ̃ of a completely regular clique graph Γ with respect to a col-
lection of cliques C is often realized as an induced subgraph on ∆m−1(x) ∪ ∆m(x) of a
bipartite distance-regular graph ∆, and in several cases m = d(∆).

In [8], Caughman proved that if ∆ is a Q-polynomial bipartite distance-regular graph
of diameter m = d(∆), then the distance-2-graph Γ on ∆m(x) is a Q-polynomial distance-
regular graph for each vertex x. For example, if ∆ is the dual polar graph Dd(q), then
Γ is isomorphic to Altq(n). See [6, Proposition 9.5.11]. If ∆ is the Hemmeter graph
Hemd(q) with q odd, then Γ is isomorphic to Quadq(d). What happens if Γ is isomorphic
to Quadq(d) with q even? See [9, 19].

Problem 4 Which completely regular clique graph Γ with respect to a collection of
cliques C can be realized as an induced subgraph of the distance-2-graph on the last
subconstituent of a bipartite distance-regular graph ∆?

Problem 5 Classify distance-regular graphs cospectral to the dual polar graphs of type
D. Is there a distance-regular graph whose last subconstituent is isomorphic to Quadq(d)
with q even?

In [21], we showed several nice parametrical conditions of distance-semiregular graphs.
Hence distance-regular completely regular clique graphs have higher regularity that gen-
eral distance-regular graphs do not enjoy.

Problem 6 Is there an absolute bound on the girth of the incidence graph of a completely
regular clique graph of parameters (s, c) with s > 1?

In Table 1, we summarize Theorem 3.1 for the case s > 1. Note that

µi = |C ∩ Γi(x)|, where x ∈ Γi(C),

for i ∈ {0, 1, . . . , δ(C)} and C ∈ C. By a result in [20], if C is a clique of a distance-regular
graph Γ, C is completely regular if and only if µi depends only on i, and the parameters
are determined by µi’s and the parameters of Γ.
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